Rechercher dans ce blog

Friday, October 30, 2020

Large Chinese land carbon sink estimated from atmospheric carbon dioxide data - Nature.com

  • 1.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    ADS  Google Scholar 

  • 2.

    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    ADS  CAS  Google Scholar 

  • 3.

    Thompson, R. L. et al. Top-down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 7, 10724 (2016).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  • 4.

    Jiang, F. et al. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci. Rep. 6, 22130 (2016).

    ADS  CAS  PubMed Central  PubMed  Google Scholar 

  • 5.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Zhang, Y., Yao, Y., Wang, X., Liu, Y. & Piao, S. Mapping spatial distribution of forest age in China. Earth Space Sci. 4, 108–116 (2017).

    ADS  Google Scholar 

  • 7.

    Williams, R. A. Mitigating biodiversity concerns in eucalyptus plantations located in South China. J. Biosci. Med. 3, 57099 (2015).

    Google Scholar 

  • 8.

    Barlow, J. M., Palmer, P. I., Bruhwiler, L. M. & Tans, P. Analysis of CO2 mole fraction data: first evidence of large-scale changes in CO2 uptake at high northern latitudes. Atmos. Chem. Phys. 15, 13739–13758 (2015).

    ADS  CAS  Google Scholar 

  • 9.

    Schimel, D. S. et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–172 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. II 56, 554–577 (2009).

    ADS  CAS  Google Scholar 

  • 11.

    Rödenbeck, C. et al. Data-based estimates of the ocean carbon sink variability — first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM). Biogeosciences 12, 7251–7278 (2015).

    ADS  Google Scholar 

  • 12.

    Gregg, J. S., Andres, R. J. & Marland, G. China: emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys. Res. Lett. 35, L08806 (2008).

    ADS  Google Scholar 

  • 13.

    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 14.

    Piao, S. L. et al. The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 9, 3571–3586 (2012).

    ADS  CAS  Google Scholar 

  • 15.

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 16.

    Tian, H. et al. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. Atmos. 116, G02011 (2011).

    ADS  Google Scholar 

  • 17.

    Zhang, H. et al. Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J. Geophys. Res. Atmos. 119, 3500–3515 (2014).

    ADS  CAS  Google Scholar 

  • 18.

    Wang, Q. et al. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci. Bull. 60, 577–590 (2015).

    CAS  Google Scholar 

  • 19.

    Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q. & Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322 (2001).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 20.

    Pan, Y., Luo, T., Birdsey, R., Hom, J. & Melillo, J. New estimates of carbon storage and sequestration in China’s forests: effects of age-class and method on inventory-based carbon estimation. Clim. Change 67, 211–236 (2004).

    ADS  CAS  Google Scholar 

  • 21.

    Yokota, T. et al. Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. Sci. Online Lett. Atmos. 5, 160–163 (2009).

    Google Scholar 

  • 22.

    Zeng, W., Tomppo, E., Healey, S. P. & Gadow, K. V. The national forest inventory in China: history — results — international context. For. Ecosyst. 2, 23 (2015).

    Google Scholar 

  • 23.

    Liu, J., Li, S., Ouyang, Z., Tam, C. & Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl Acad. Sci. USA 105, 9477–9482 (2008).

    ADS  CAS  PubMed Central  Google Scholar 

  • 24.

    Wang, S. et al. Relationships between net primary productivity and stand age for several forest types and their influence on China’s carbon balance. J. Environ. Manage. 92, 1651–1662 (2011).

    PubMed Central  Google Scholar 

  • 25.

    Yu, Y. et al. Influence of site index on the relationship between forest net primary productivity and stand age. PLoS One 12, e0177084 (2017).

    PubMed Central  PubMed  Google Scholar 

  • 26.

    Du, H. et al. Carbon storage in a eucalyptus plantation chronosequence in Southern China. Forests 6, 1763–1778 (2015).

    Google Scholar 

  • 27.

    Xu, K., Yang, D., Xu, X. & Lei, H. Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. J. Hydrol. 527, 630–640 (2015).

    Google Scholar 

  • 28.

    Cooperative Global Atmospheric Data Integration Project. Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1957–2017; obspack_co2_1_GLOBALVIEWplus_v4.1_2018_10_29 (NOAA Earth System Research Laboratory, Global Monitoring Division, 2018); https://doi.org/10.25925/20181026

  • 29.

    Sasakawa, M. et al. Continuous measurements of methane from a tower network over Siberia. Tellus B 62, 403–416 (2010).

    ADS  Google Scholar 

  • 30.

    Saeki, T. et al. Carbon flux estimation for Siberia by inverse modeling constrained by aircraft and tower CO2 measurements. J. Geophys. Res. Atmos. 118, 1100–1122 (2013).

    ADS  CAS  Google Scholar 

  • 31.

    Fang, S. X. et al. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China. Atmos. Chem. Phys. 14, 2541–2554 (2014).

    ADS  Google Scholar 

  • 32.

    Fang, S. X., Tans, P. P., Steinbacher, M., Zhou, L. X. & Luan, T. Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China. Atmos. Meas. Tech. 8, 5301–5313 (2015).

    CAS  Google Scholar 

  • 33.

    Kuze, A., Suto, H., Nakajima, M. & Hamazaki, T. Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl. Opt. 48, 6716–6733 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 34.

    OCO-2 Science Team. ACOS GOSAT/TANSO-FTS ACOS Level 2 Bias-Corrected XCO2 and Other Select Fields from the Full-Physics Retrieval Aggregated as Daily Files V7.3 (GES DISC, 2016); https://disc.gsfc.nasa.gov/datacollection/ACOS_L2_Lite_FP_7.3.html (accessed October 2017).

  • 35.

    Eldering, A. et al. The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science 358, eaam5745 (2017).

    PubMed Central  PubMed  Google Scholar 

  • 36.

    OCO-2 Science Team. OCO-2 Level 2 Bias-Corrected XCO2 and Other Select Fields from the Full-Physics Retrieval Aggregated as daily files. Retrospective Processing V8r (GES DISC, 2017); https://doi.org/10.5067/W8QGIYNKS3JC

  • 37.

    Didan, K. MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05 Deg CMG V006 (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/modis/mod13c2.006

  • 38.

    Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006).

    ADS  Google Scholar 

  • 39.

    Swenson, S. C. GRACE Monthly Land Water Mass Grids NETCDF Release 5.0 V5.0 (PODAAC, 2012); https://doi.org/10.5067/TELND-NC005 (accessed 27 September 2017).

  • 40.

    Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour. Res. 48, W04531 (2012).

    ADS  Google Scholar 

  • 41.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).

    ADS  Google Scholar 

  • 42.

    van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    ADS  Google Scholar 

  • 43.

    Oda, T. & Maksyutov, S. A very-high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmos. Chem. Phys. 11, 543–556 (2011).

    ADS  CAS  Google Scholar 

  • 44.

    Oda, T. & Maksyutov, S. ODIAC Fossil Fuel CO 2 Emissions Dataset (ODIAC2016) (Center for Global Environmental Research, National Institute for Environmental Studies, 2015); https://doi.org/10.17595/20170411.001 (accessed 1 June 2017).

  • 45.

    Shan, Y. et al. China CO2 emission accounts 1997–2015. Sci. Data 5, 170201 (2018).

    CAS  PubMed Central  PubMed  Google Scholar 

  • 46.

    Olsen, S. C. & Randerson, J. T. Differences between surface and column atmospheric CO2 and implications for carbon cycle research. J. Geophys. Res. Atmos. 109, D02301 (2004).

    ADS  Google Scholar 

  • 47.

    Feng, L., Palmer, P. I., Bösch, H. & Dance, S. Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman filter. Atmos. Chem. Phys. 9, 2619–2633 (2009).

    ADS  CAS  Google Scholar 

  • 48.

    Feng, L. et al. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys. 11, 2789–2803 (2011).

    ADS  CAS  Google Scholar 

  • 49.

    Feng, L. et al. Estimates of European uptake of CO2 inferred from GOSAT XCO2 retrievals: sensitivity to measurement bias inside and outside Europe. Atmos. Chem. Phys. 16, 1289–1302 (2016).

    ADS  CAS  Google Scholar 

  • 50.

    Gurney, K. R. et al. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630 (2002).

    ADS  PubMed  Google Scholar 

  • 51.

    Saeki, T. & Patra, P. K. Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion. Geosci. Lett. 4, 9 (2017).

    ADS  Google Scholar 

  • 52.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  • Let's block ads! (Why?)



    "from" - Google News
    October 28, 2020 at 11:30PM
    https://ift.tt/35LpcSG

    Large Chinese land carbon sink estimated from atmospheric carbon dioxide data - Nature.com
    "from" - Google News
    https://ift.tt/2SO3d93
    Shoes Man Tutorial
    Pos News Update
    Meme Update
    Korean Entertainment News
    Japan News Update

    No comments:

    Post a Comment

    Search

    Featured Post

    5 key takeaways from Xi's trip to Saudi Arabia - CNN

    Editor’s Note: A version of this story appears in CNN’s Meanwhile in today’s Middle East newsletter, a three-times-a-week look inside the r...

    Postingan Populer